eSPECIAL

Refrigeration | AC & Ventilation | Heat Pumps

13.-15.10.2020

CONNECTING EXPERTS.

NÜRNBERG MESSE

Welcome

How to make any heating/cooling device more silent

Michael Kraus / Product Management Axial Fans and Application Management Heat Pumps

Considerations

Considerations

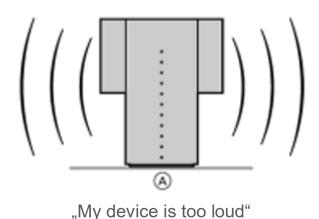
Noise and noise pollution

- Studies show that noise is increasingly becoming a risk to human health
- You can't get used to noise
- Different legislations to regulate noise are active (e.g. TA Lärm)
- Trend to more air conditioners and especially air/water heat pumps
- Several countries (e.g. Netherlands, Austria) begin to discuss lower limits for sound power emission for heat pumps
- Devices have become even more silent in the future

Considerations

Regulation, Installation, Technology

- Legal and regulatory considerations
 - Fans: Current legislative EU/327/2011 (=ErP2015)
 - When will the next tier be active? ErP202?
 - What will be the efficiency threshold?
 - Trade-off between best acoustics and highest efficiency
- Technical considerations for devices
 - Examples of problems of optimization
 - Acoustic & efficiency vs. compact units with small footprint
 - Evaporator: Sensitivity to icing vs. tip clearance (=acoustics)
 -



Influence parameters on acoustics

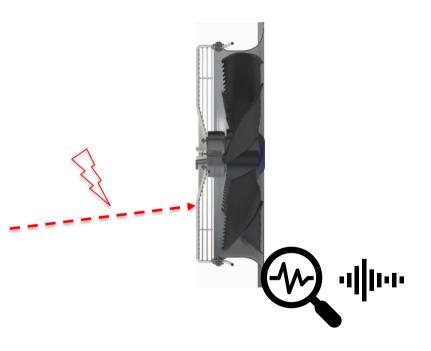
What the user hears:

What are the noise sources?

- Unfavourable installation on site
 - Reflection of sound (e.g. walls)
 - High backpressure and turbulences of air
 - Missing mechanical decoupling of structure and device
- Unfavourable design device
 - (Fluid path: compressor, piping)
 - Air path
 - Fan
 - "System influences"

Influence parameters air path

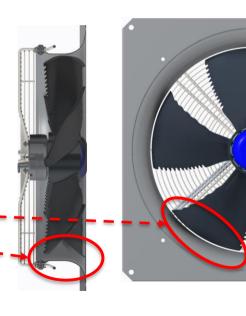
Depending on fan


- Acoustics of fan aerodynamics
- Motor noise

Influence parameters air path

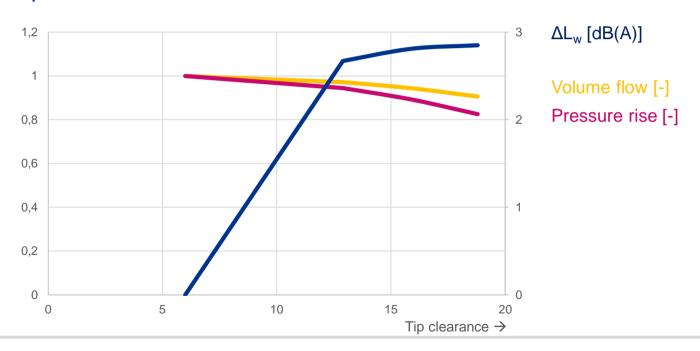
Depending on fan

- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)


Influence parameters air path

Depending on fan

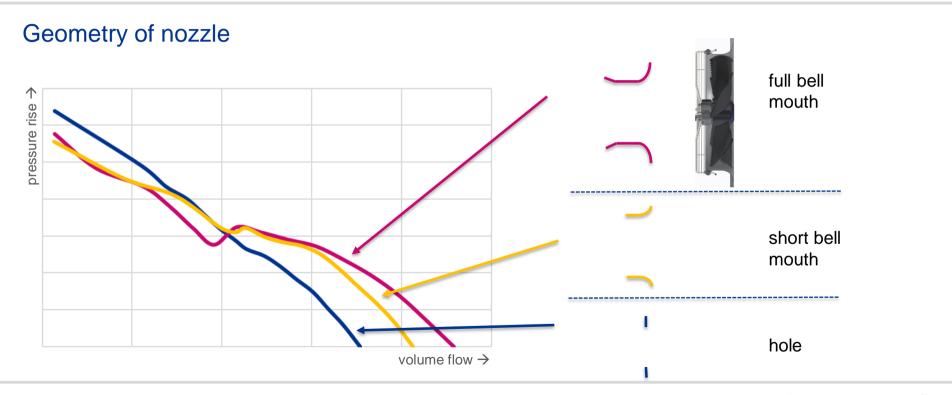
- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)


Depending on system

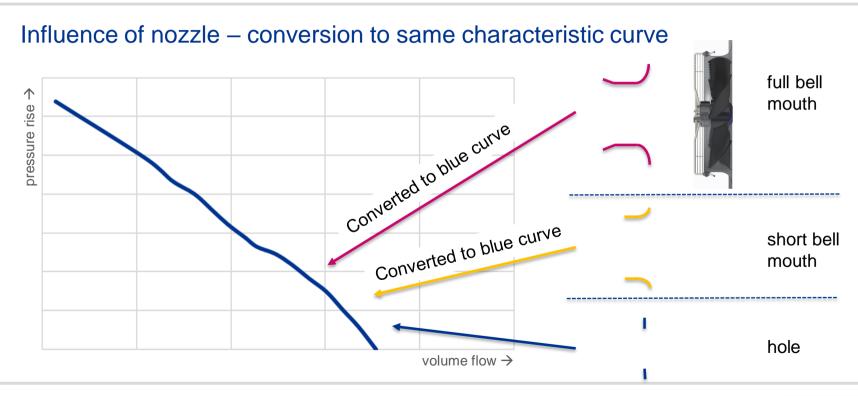
Tip clearance

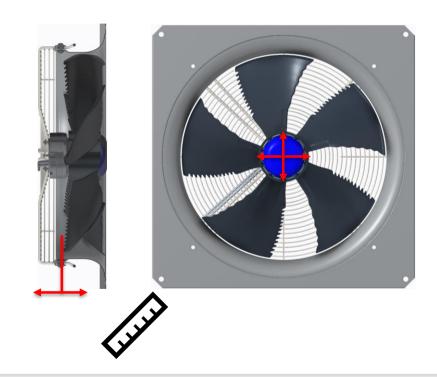
Tip clearance

Influence parameters air path


Depending on fan

- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)


- Tip clearance
- Geometry of nozzle

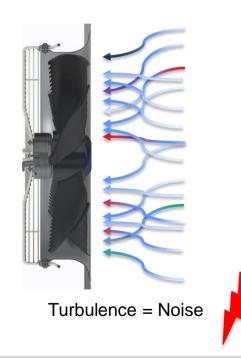

Influence on acoustic performance

Influence parameters air path

Depending on fan

- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)

- Tip clearance
- Geometry of nozzle
- Position of fan in nozzle

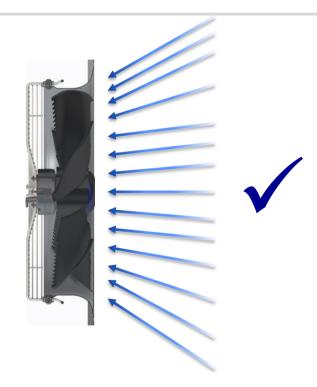


Influence parameters air path

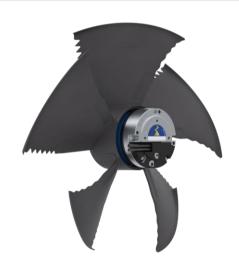
Depending on fan

- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)

- Tip clearance
- Geometry of nozzle
- Position of fan in nozzle
- Obstruction/Turbulence (suction AND pressure side)
 - e.g. Grille, heat exchanger, struts of device


Influence on acoustic performance

Influence parameters air path


Depending on fan

- Acoustics of fan aerodynamics
- Motor noise
- Vibrations due to imbalance (structure borne!)

- Tip clearance
- Geometry of nozzle
- Position of fan in nozzle
- Obstruction/Turbulence (suction AND pressure side)
 - e.g. Grille, heat exchanger, struts of device

FE3owlet with EC072

FE3owlet EC072 - details

Fan based technical data - Fact & Figures

Impeller sizes: 350 – 450

Design: FE3owlet

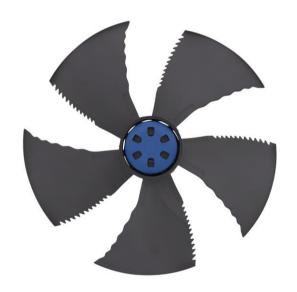
serrated trailing edge

winglet

sickle shape

air foil

corrugated leading edge →


known for best acoustics

latest biomimetic insights to handle unfavourable inflow conditions

composite

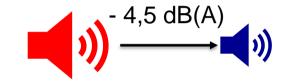
ErP: 202x compliant

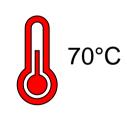
FE3owlet EC072 - details

System based Facts & Figures

Depending on fan

- ✓ Best acoustics of fan aerodynamics
- ✓ Minimal motor noise
- ✓ Extremely low vibrations due to imbalance


- ✓ Ideal tip clearance
- ✓ Best geometry of nozzle
- ✓ Optimal position of fan in nozzle
- Only mandatory obstruction/turbulence due to the guard grille



FE3owlet EC072 - details

FE3owlet with EC072 which is up to 4,5 dB(A)
more quiet than market standard.

 FE3owlet with EC072 can handle up to 70°C fluid temperature, which is 10K more than market standard

Conclusion

Conclusion

Design and installation considerations for cooling and heating devices

- Proper design to exploit full potential of fans in devices is necessary
- Proper installation to exploit full potential of device on site is necessary
- Team play of manufacturer, installer and planner

Contact – ZIEHL-ABEGG

Michael Kraus

Product Management Axial Fan

Ventilation Technology

Heinz-Ziehl-Straße

74653 Künzelsau

Germany

Phone +49 7940 16-90147

Michael.Kraus@ziehl-abegg.de

Thank you for your attention.

